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NATIONAL ADVISORY COMMITTEZ FOR AERONAUTICS 

RESEARCH MEMORANDUM 

AERODYNAMIC CHARACTERISTICS OF TWO FG3CTA.NGULA.R-PLAN-FORM, 

OF RFVOLUTION AT MACH NUMBERS FROM 3.00 TO 6.25 

By Thomas J. Wong and. Hermilo R. Gloria 

Results of force and moment tests at Mach numbers from 3.00 to 6.25 
on two rectangular-plan-form, all-movable controls in combination with a 
slender body of revolution are presented and compared with the predic- 
tions of theory. 
panels joined together) and ratios of body radius to wing semispan of 0.6 
and 0.4, respectively. The body had a fineness ratio of 12. The models 
were tested at angles of attack up to 2 5 O ,  control deflection angles 
from -30° to +30°, and Reynolds numbers based on control chord from 0.23 
million to 1.2 million, depending on test Mach number. 

The controls had aspect ratios of 4/9 and 1 (for exposed 

The results showed that lift variations with angle of attack were 
somewhat nonlinear for both control-body combinations tested. 
linearized wing-body interference theory when combined with experimentally 
determined characteristics of the body gave, for the most part, adequate 
predictions of lift, drag, and pitching-moment coefficients of the control- 
body combinations. 

However, 

Control hinge moments were linear only at small angles Of attack and 
control deflection. Hinge-moment parameters were influenced to a large 
extent by the shape of the airfoil section and, hence, were not well pre- 
dicted by linear theory. 
slender-airfoil shock-expansion method., provided better estimates of these 

A method which considers this effect, the 

. / parameters. ' /  / 

-___ __-_I--- - ~ INTRODUCTION 

The problem of providing adequate control for missiles traveling 
at high supersonic speeds is aggravated by the well-known decrease in 
lift effectiveness of planar surfaces with increasing Mach number. Due 
to this decrease, it is often desirable at high supersonic speeds to 
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employ the entire stabilizing surface for control - that is, as an all- 
movable control. For various reasons, these controls are generally small 
and, therefore, operate entirely within the disturbed flow field created 
by the missile body. It follows, then, that wing-body interference will 
usually play an important role in the aerodynamic characteristics of the 
body-control combinations. 

At low supersonic speeds, the nature of wing-body interference is 
There is a large amount of experimental data reasonably well understood. 

available and several theories for treating the interference flows. For 
the case of an all-movable wing, the theoretical methods include that of 
Tucker (ref. 1) who treated only the lift, using linear theory with 
approximate boundary conditions. There is also the work of Nielsen, 
Kaattari, and Drake (ref. 2) which is based on a combination of linear 
and slender-body theory. This method provides predictions of the lift, 
pitching moment, and hinge moment. 
Katzen and Pitts (ref. 3) to include predictions of drag. There are, in 
addition, several other methods available for low supersonic speeds. All 
of these methods are, in general, based on linear theory and they have 
been found to be adequate f o r  predicting the aerodynamic forces and moments 
(with the possible exception of hinge moments) for wing-body combinations, 
subject, of course, to the usual restrictions of linear theory. 

This result has been extended by 

At high supersonic speeds, however, the situation is not so encourag- 
ing. There is not, at present, any mass of data available on the aero- 
dynamic characteristics of all-movable wing-body combinations nor any 
well-established theory. Since the theoretical methods used at lower 
speeds are, as noted, based on linear theory, their application at high 
supersonic speeds is often suspect. More comparisons with experimental 
data are required before the limitations of the linearized methods can be 
ascertained accurately at high Mach numbers. As a step toward providing 
the needed experimental data, a program was undertaken to determine the 
aerodynamic characteristics of two all-movable wing controls in combina- 
tion with a slender body of revolution. These controls had rectangular 
plan forms and were tested at Mach numbers from 3.00 to 6.25, angles of 
attack up to 25O, and angles of control deflection from -30° to +30°. 
The results of this investigation are reported herein together with com- 
parisons of the experimental characteristics with those predicted by 
theory. 

SYMBOLS 

(b - %I2 
S A aspect ratio (for exposed panels joined together), 

b control span 

C control chord 

. 
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lift lift coefficient, - 
Sflrb2 

bag drag coefficient, - 
¶.q2 

pitching moment 

qmb2 2 
pitchicg-EQEent csefficient abcxt bedy n m e  7 

control normal force 
ss control-normal-force coefficient, 

L<nr.- n-,nn.i- I r l l l g c  IIIU111C11 b hinge-moment coefficient, 
qsc 

body length 

Mach number 

free-stream dynamic pressure 

body radius 

body radius at base 

control plan area, exposed 

longitudinal coordinate 

control center of pressure, fraction of control chord 

control center of pressure for a variable, 6 = Oo, percent of 
control chord 

control center of pressure for 6 variable, a = oO, percent of 
control chord 

angle of attack of body 

control deflection angle relative to body axis, positive for down- 
ward deflection of trailing edge 

Subscripts 

unless otherwise spec- a rate of change with angle of attack, - 

rate of change with control deflection angle, $j, unless other- 

ified aa' 

wise specified 
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EXPERIMENT 

Test Apparatus and Methods 

The tests were conducted in the Ames 10- by 14-inch supersonic wind 
tunnel at Mach numbers of 3.00, 4.23, 5.05, and 6.25. 
described in detail in reference 4. 

This facility is 

Aerodynamic forces and moments were measured by a three-component 
strain-gage balance. Forces parallel and perpendicular to the balance 
axis and moments about the model base were measured directly and resolved 
to give lift, drag, and pitching moments about the body nose. Hinge 
moments and forces on the wing perpendicular to the body axis were measured 
by a two-component strain-gage balance mounted within the test body. 
Angles of attack greater than +5O were obtained by the use of bent sting 
supports. Tare forces on the stings were essentially eliminated by 
enclosing the stings in shrouds that extended to within 0.040 inch of the 
model base. 
pressure measurements. These forces were subtracted from the measured 
forces acting on the entire model. 
resent only the forces acting on the forward portion of the model, exclus- 
ive of the base. 

e 

Forces acting on the model base were determined from base- 

The data presented, therefore, rep- 

Static and dynamic pressures were determined from wind-tunnel calibra- 
tion data and stagnation pressures measured with a Bourdon type pressure 
gage. Reynolds numbers based on control chord length were: 

Reynolds number, 
million Mach number 

3 .oo 1.20 
4.23 1.09 
5.05 53 
6.25 23 

Models 

The models used in this investigation consisted of a slender body of 
revolution and two sets of all-movable controls. 
of the models are given in figure 1. The body consisted of a 3/4-power 
profile nose section (see ref. 5) with a fineness ratio of 3, faired to 
a cylindrical afterbody having a fineness ratio of 9. The controls had 
aspect ratios of 4/9 and 1 (for exposed wing panels joined together) and 
ratios of body radius to wing semispan of 0.6 and 0.4, respectively. Both 
controls had rectangular plan forms and a 4-percent-thick biconvex airfoil 
section with a 50-percent-blunt trailing edge. The control hinge-line was 

Tkie pertinent dimensions 
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CD 
CL 
c, 
ch 
cNC 

Y 

k0.013 20.02 20 .02 +O .04 
2 .013 + .02 + .02 2 .04 
2 ,010 2 .02 2.02 2.04 
2 .005 f .01 2 .01 f.02 
2.01 & .02 & .02 5.04 

located at 50 percent of chord and the gap between wing and body was 0.008 
inch. The models were constructed of steel and had polished surfaces. 

The models used in this investigation were not intended to represent 
practical aircraft configurations. 
information on the relative merits of rectangular-plan-form controls and 
are useful for assessing the applicability of available theories for 
estimating the aerodynamic characteristics of all-movable wing and body 
combinations at high supersonic speeds. 

The results, nevertheless, provide 

Variations in Mach number in the test region did not exceed fO.02 
except at the maximum test Mach number of 6.25 where the variation was 
20.04. Deviations in stream Reynolds number for a given Mach number did 
not exceed 210,000 from the mean values given in the previous section. 
The estimated errors in the angle of attack due to uncertainties in cor- 
rections for stream angle and for deflections of the model-support system 
were 20.2'. 

The following table of uncertainties represents the maximum possible 
errors involved in the measurement of the aerodynamic forces and moments: 

I Quantity I M = 3.00 I M = 4.23 I M = 5.05 I M = 6.25 

I I I I 1 

RFSULTS AND DISCUSSION 

Experimental Results 

The results obtained in the present investigation are given in tables 
I and I1 for the complete range of test vasiables. The coefficients for 
the control-body combinations are referenced to the body-base area; 
whereas the coefficients for the control in the presence of the body are 
referenced to the control-surface area. 

Characteristics of the control-body combinations.- The variations of 
CL with a, G, and are presented in figure 2 for both configurations 
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tested. The results f o r  both control-body combinations are essentially 
similar over the range of test parameters, the principal difference being 
in the magnitude of the control loads. 
explained by the difference in control-surface area. 

This difference can be largely 

The variations of CL with a. 

at 

are somewhat nonlinear and generally 
show increasing lift effectiveness with increasing angle of attack except 
at large values of M = 3.00 and 4.23 where appreciable reduc- 
tions in lift effectiveness w e  observed. These reductions in lift effec- 
tiveness are  also reflected in the drag polars, particulasly those for 
the A = 4/9 control. 

a + 6 

Control effectiveness.- The variations of lift coefficient with con- 
trol deflection angles for both configurations at several angles of attack 
are presented in figure 3 for all test Mach numbers. The results are some- 
what nonlinear and generally show only small variations in control effec- 
tiveness with angle of attack and control deflection except at large 
a, + 6 and M = 3.00 and 4.23, where it is observed that the effectiveness 
of both controls decreases markedly. Similar results have been observed 
in test results obtained at lower Mach numbers (see ref. 6). 

The A = 1 control, which has the larger control-surface area, is, 
of course, a more powerful control than the 
evident in figure 3. The lift coefficients presented in figure 3 are 
referenced to the base area of the body, however, and do not indicate 
the effectiveness per unit of control-surface area. A more informative 
comparison of the two controls has been made in figure 4, where their 
effectiveness parameters, C L ~  (measured at a = 6 = O o ) ,  multiplied by 
the ratio of body-base area to control-surface area are presented as a 
function of Mach number. The results show that increasing the aspect 
ratio increases the control effectiveness (per unit of control-surface 
area) only at Mach numbers less than 5.0. Above M = 5.0 the A = 4/9 
control has essentially the same effectiveness as the A = 1 control. It 
is also shown in figure 5 that these trends are fairly well predicted by 
the linear-theory method of reference 2.' 
joined together, the 
than the A = 1 control. The difference is made up by increased inter- 
ference lift carried on the body. 
sating effects of control-body interference and aspect ratio are not 
unique to Mach numbers above 5.0 but could occw at other Mach numbers 
for different combinations of aspect ratio and ratios of body radius to 
control semispan. It is evident, then, that increasing the aspect ratio 
does not always increase control effectiveness. It is also evident from 
figure 4 that control effectiveness, as might be expected, is strongly 
dependent on Mach number. Large reductions in effectiveness occur as the 
test Mach number increases from 3.00 to 6.23. 

A = 4/9 control. This is 

If the exposed panels were 
A = 4/9 control would, of course, be less effective 

It should be noted that these compen- 

1More detailed comparisons of theory and experiment are presented in 
a later section. 

c 
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Lift-drag ratio.- The variations of lift-drag ratio with lift coef- 
ficient for both configurations at M = 3.00 are presented in figure 5. 
It is observed that the aspect-ratio-1 control provides higher lift-drag 
ratios at s m a l l  control deflections, whereas the aspect-ratio-4/9 control 
provides higher ratios at large control deflections. The change is par- 
t i c i ~ . a r ~ y  evident between the ciirvea f o r  6 = GO and for 6 = -1-300. Sim- 
ilar results were obtained at the higher Mach numbers. 

Control normal force.- The variations of control-normal-force coef- 
ficient with angle of attack and control deflection are presented in 
figures 6 and 7 for both configurations tested. 
what nonlinear and tend to show an increase in control normal-force effec- 
tiveness, (CN~)~, with increasing la + 6 I. 
earity in the control normal forces, particularly at the higher Mach 
numbers, may be attributed to nonlinear variation of pressure coefficient 
with flow deflection angle. Another possible cause of nonlinearity at 
large is the reduction of upwash angle at the control (see refs. 7, 
8, and 9). Nonlinear variations of the local body upwash with 6 are 
also possible since, due to the finite length of the chord, the leading 
and trailing edges of the control are a considerable distance away from 
the plane of greatest upwash when the controls are deflected to lazge 
angles. 

The results are some- 

A large part of the nonlin- 

a 

Hinge-moment characteristics.- The variations of hinge-moment coef- 
ficients with angle of attack and with control deflection angle are shown 
in figures 8 and-9. 
moment coefficients decrease with increasing Mach number and aspect ratio. 
In most cases, the variations of hinge moment with a and 8 are decidedly 
nonlinear. The primary sources of nonlinearities are, of course, the same 
as for the control normal forces. Another source of nonlinearity in the 
hinge-moment variations is center-of-pressure travel. This point becomes 
most evident at approximately a + 6 2 30' for both controls at all Mach 
numbers tested (compare, e.g. , figs. 6 and 8). 
reductions in hinge-moment coefficient are observed with increasing angle 
of attack, whereas normal-force coefficients continue to increase. A 
rapid movement of the center of pressure (toward the hinge line) is indi- 
cated. Thus, it appears that the controls cannot be closely balanced 
throughout the test range of angles of attack and control deflections. 

In general, the results indicate that the hinge- 

For a + 6 > 30°, sharp 

Comparisons of Theory and Experiment 

Control-body combinations.- The aerodynamic characteristics of the 
control-body combinations have been estimated by adding theoretical 
predictions for the controls (including contributions of control-body 
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interference) to the experimental characteristics of the body alone.* 
The theoretical predictions for the controls are based on the linear- 
theory methods of references 2, 3, and 12.  
istics of the body alone were reported in reference 13. 

The experimental character- 

Comparisons of the estimated and experimental values of lift, drag, 
and pitching-moment coefficients at Mach numbers of 3.00 and 6.23 are 
shown in figures 10 and 11 for both control-body combinations tested. 
The agreement between theory and experiment is generally good to angles 
of attack of about 10' to l5', except at large values of +a. 
interest to note that the linear variations of lift and pitching moment 
are restricted to an exceedingly small range of angles of attack even at 
M = 3.00 and that the use of experimental characteristics for the body 
in the estimated results has accounted for most of the nonlinearities 
in the lift and pitching-moment curves of the control-body combinations. 
The major contribution to the nonlinearities for the body itself is the 
viscous cross force (see ref. 14). 

It is of 

b 

Control-surface characteristics.- The normal-force characteristics 
of the controls have been estimated by means of the linear-theory methods 
of references 2 and 12 and the slender-airfoil shock-expansion method 
of reference 15.3 
method: First the control was considered to behave as a wing alone and, 
second, as a control in the presence of the body. 
measured control normal-force coefficients, CnC, for the undeflected con- 
trol, 6 = Oo, are compared in figure 12. 
of interference included seems to provide good estimates of the control 
normal forces at the smaller angles of attack; whereas the shock-expansion 
method with the effects of interference neglected is generally in agree- 
ment with the measurements at the larger angles of attack. Similar trends 
were noted for the other control deflection angles tested. The values 
predicted by linear theory (with the effects of interference included) 
and by the shock-expansion method (with interference effects neglected) 
are compared with measurements for the complete range of control deflec- 
tions in figures 13 and 14. 
with increasing values of the hypersonic similarity parameter hb, the 
normal-force characteristics of the control in the presence of the body 
approach those for the control alone. Such a result would be expected 
because at larger angles of attack, the flow about the body becomes hyper- 

Two sets of calculations were performed with each 

The predicted and 

Linear theory with the effects 

These comparisons would seem to indicate that, 

sonic in character (i.e., it can, in the main, be described by Newtonian 
2No correction was applied to the estimated characteristics of the 

control-body combinations for the effects of the streamwise gap between 
control and body. 
presented in references 10 and 11, that the effects of the gap would be 
negligible. 

method of reference 16. Unpublished data for rectangular wings at 
M = 3.36 indicate that the control normal forces predicted by use of this 
tip correction may be slightly low at the larger angles of attack. 

It was believed, on the basis of experimental results 

3The effects of the tip region were estimated on the basis of the 
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flow concepts (see ref. 17)) and the upwash angle on the side of the body 
approaches the angle of attack of the body. 

Both the linear-theory method and the slender-airfoil shock-expansion 

a = 6 = oO). 

method (including an average upwash angle) have been used to estimate the 
control-surface parameters, (CN~),, (cN,)~, c&, and Ch 
The comparisons with experiment are shown in figure 15. Both methods 
provide rather good estimates of (CN ) 
curve slopes for linear theory being slightly lower than for the shock- 
expansion method due to the fact that linear theory neglects the effect 
of thickness on lift. Linear theory, however, provides a poor estimate 
of both Ch, and Ch8. Linear theory is in error primarily in the pre- 
diction of the center of pressure on the control. Much of this error is 
due to the fact that the theory neglects any effect of airfoil section 
on center-of-pressure location. The slender-airfoil shock-expansion 
method, which considers this effect, provides a better estimate of these 
parameters, though the values of C b  are still underestimated. This 
error may be attributed to the tendency for a larger portion of the 
boundary layer on the body to flow over the control surface when the 
body is inclined. This flow could cause separation on the lee surface 
of the control and have a considerable effect on the hinge moments. 

(at 6 

and (CN ) the normal-force 
C a  c 6' 

CONCLUSIONS 

Analysis of the results of force tests on two rectangular-plan-for, 
all-movable controls of aspect ratios 4/9 and 1 in combination with a 
slender body of revolution at Mach numbers from 3.00 to 6.25 and Reynolds 
numbers from 0.23 to 1.2 million has led to the following conclusions: 

1. The variations of lift with angle of attack for the control- 
body combinations are somewhat nonlinear throughout the range of test 
Mach numbers. The major contributor to the nonlinearities is the body 
itself. Control normal forces are only slightly nonlinear throughout 
the range of angles of attack and control deflection. 
moments, however, are linear only at small angles of attack and control 
deflection. 

Control hinge 

2. The aspect-ratio-1 control is more effective than the aspect- 
ratio-4/9 control at Mach numbers less than 5. At Mach numbers of 5 and 
above, the two controls have essentially the same effectiveness per unit 
of control-surface area. At small control deflections, the aspect-ratio-1 
control is more efficient than the aspect-ratio-4/9 control and provides 
higher Lift-drag ratios at a given lift coefficient. 
defiections t'ne converse is h u e .  

At large control 

3. Nonlinearities in control effectiveness are generally small, 
except at large combined angles of attack and control deflection where 
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appreciable losses in control effectiveness are found. Control effec- 
tiveness decreases rapidly with increasing Mach number in accordance with 
theoretical predictions. 

4. Estimates of the aerodynamic characteristics of the control- 
body combinations, which combined the experimental characteristics of the 
body and the linear theory predictions of the contributions of the controls 
(including wing-body interference), are generally good to angles of attack 
of about 10' to 15'. 

5 .  Linear theory (including the effect of body upwash) provides 
good estimates of the control normal forces at small angles of attack 
and control deflection. 
tion, and, in general, at the higher Mach numbers, control normal forces 
are generally better predicted by a slender-airfoil shock-expansion 
method neglecting the effect of interference, indicating that the normal- 
force characteristics of the control in the presence of the body approach 
those for the control alone with increasing values of the hypersonic 
similarity parameter, Mu. 

At larger angles of attack and control deflec- 

6 .  Hinge-moment parameters are influenced to a large extent by the 
shape of the airfoil section and, hence, are not well predicted by linear 
theory. A method which considers this effect, the slender-airfoil shock- 
expansion method, provides better estimates of these parameters. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Oct. 7, 1955 
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TABU I. - EXPERIMENTAL IiESULTS FOR ASPECT-FATIO-4/9 CONTROL-BODY 
COMBINATION 

(a) M = 3.00; M = 4.23 

- 
I_ 

0.276 
,973 

,242 
- - -  
_ - -  - - -  - - -  

.374 

.393 

.404 

.368 
,355 
,331 

-.163 
,183 
,282 
,372 
,386 
,399 

. 3 3  
,355 
.368 
.326 
,359 
,368 
,373 
,395 
,402 
,417 

; ;:; 

- - -  

,150 
.351 
,347 

,383 
.314 

.I .?67 
,484 
,442 
.435 

_ _ _  

,347 
,351 
,350 
.361 
,376 
.401 
.LIE 
,428 
,440 
,449 

,398 
.373 
,349 

,312 
,227 .w 
,142 

- - -  - - -  

0 

,363 
,373 
. 3 a  
,354 
,347 
.391 
.418 
462 

,461 
,476 

0 
1 .( 
2 .I 
2.1 

.LO 

1 0  

20 

20 

30 

30 

5.C 
7.( 

10.5 
13.: 
17.E 
x.5 
24 .I 

-2.1 

-.I 
2 .C 
4.5 
8.C 

10.1 
12.5 
17.: 
20 .? 
25 .I 

-2.c 
I 

2.1 
5 .c 
8.1 

1 0  .i 
12.1 
17.E 
21 .c 
24 .i 

-2 . i  - .1 
1 .s 
4.5 
6.5 

10.1 
13.2 
17 . i  
PO.€ 
25.1 

-1.5 
1 

2 .i 
5.1 
6 .t 
10.3 
13.4 
17.5 
21 .c 
25.2 

-2.2 - .2 
1 .s 
4.e 
6.9 

13.2 

20.3 
25.0 

10 .o 

17.6 

-1.9 
2 

2.2 
5.1 
7.2 

10.3 
13.4 
17.9 

- 
CL 

0.20: 
- .oo: 
.O& 

- 

- _ .  
71 i .c. 

.5% 

.92' 
1.47: 
2.14( 
3 .lo1 
? 7 7  
4.43. 

- .55E 
-.SE 
-.on 

.28. 

. nl 
1.12: 
1 . 5 T  
2.75; 
3.41C 
4.132 

.ox 

.Sf 
,552 
,911 

1.376 
1 . 7 T  
2.20E 
3.341 
4.01: 
4 . 6 3  

- ,881 
- ,657 
-.& 
-.oy 
.ju 
,953 

1 . 9 s  
2.475 
3.1U 
3.w 

.44t 
,657 
,881 

1.247 
1.481 
2.034 
2.59: 
3.476 
3.937 
4.41: 

1 ,095 - ,884 
-.663 
-.333 
,032 
,701 

1.37: 
2.279 
2.89 
3.761 

,663 
,884 

1 ,095 
1.385 
L . 6 3  
2.020 
2.486 
3 ha: 
4.024 
4.553 

- 

M = 9.W - 
CD 

0.183 
,164 
J7.l 

.20: 

.237 
,300 
,458 
,697 

I ,206 
1 667 
2.265 

2 5 9  
. a 5  
,205 
,214 
.27@ 
.369 
,496 

1.017 
1.455 
2.073 

,205 
,315 
,259 
,340 
,481 
,604 
,772 

1.431 
1.920 
2.495 

- 

- _ -  

,426 
.351 
.3= 
,277 
.2P 
,372 
,557 
.9% 

1.37@ 
2.039 

,312 
.351 
,426 
,533 
,669 
,867 

1 .1g 
1.644 
2.046 
2.703 

,679 
,589 
. Y 9  
,437 
.405 
,456 
,614 
,017 
,395 
,985 

.509 
,589 
,679 
,850 
,969 

1.064 
1.259 1 R7h 

2.389 
3.085 

- 
era 

0.09E 
- . 003  - .03e 

- ,156 
- . 5 u  -.n9 
.i ,193 
.1.751 
.2 .la 
.2.7.l4 

,368 
,239 
.lo2 - ,086 - 2 9 1  

- . 2 3  
-.?a4 
.1.458 
.1.879 

- _ _  
- ,318 

.2.298 

- ,102 
- ,239 
-.368 
- ,545 -.m 
.1.008 
, 1 2 6 8  
.1.976 
.2.412 
.2.843 

,608 
,488 
,379 
,161 - ,041 - ,404 

-.7% 
.1 .2P 
.1.660 
9.241 

- ,379 - ,488 
- ,608 
-.Eo3 
-.E% 
1.216 
1.941 
.2.057 
.2.302 
2.543 

.742 

,514 
,341 
.129 

- .242 - ,636 
1.139 
1.515 
2 .lo2 

. 6 P  

- ,514 - . 6 3  
- ,742 -.e& 
1.004 
1.211 
1.472 
2 .om 
2.509 
2.854 

- 
ch - 

.o ,008: 

.0085 

- .0011 _ - .  
_ _ .  - _ .  
_ - .  
.02E 
,0301 

.03% .@'z 
,048: 

- .02% 

- .022E - ,0145 

.0161 

. o w  
,0201 
.024: 
.0275 
.033 

,014: 
.022E 
,029: 
,0492 
.0544 
,055: 
,0554 
.057: 
.059E 
.058i 

_ _ .  

- .065€ 
- . o s 1  
- ,0454 

-.00* - .00% 
.000: 

,0073 

- - -  - .013i 

,003: 

, 0 4 9  
,0561 
. O W  . 0 7 u  
,0734 
,0632 
,055: 
.053E 
.04% 
.o46i 

- ,0695 
- .0764 
-.0761 - _ -  
- - -  - ,0405 - ,0434 - ,0349 

-.0373 - ,0384 

. 6 9 5  
,0764 
.0767 
,1100 
,1210 
,0860 
,0620 
"722 

.03R 
,0244 

.->.. 

- 
CN, - 

-0.040 
,002 

,035 
- _  

.221 
,281. 

.E . .,, 
,505 

- ,222 

- ,157 
-.Om 

,024 
,061 
.094 
.I92 
,244 

- - -  

,328 

.om 

.I57 
,222 
.283 
,386 
,419 
.4 9 

,704 

.5?3 
,612 

-A37 
- ,376 
- ,297 - - _  
- ,117 

- ,003 
.032 

- ,042 

.060 

. l l2 

,297 
.376 
.437 
,532 
.592 
.639 
.673 
,744 
,818 
.919 

- ,682 
- . a 3  -.* 
- ,215 - .159 - ,125 
- .lo4 
-.077 

- - -  - _ -  

.* 
,603 
.682 
-753 
,792 
.786 
,759 
a75 

.954 
1.024 

.~ ,, 

- 
-2 .o 
0 
1 . 0  
2.0 
L .7 
8 .o 
10.0 

.is'; 
1.134 
i.242 L .- 

-2.1 -.449 ,201 
0 -.234 ,167 
2 .0  -.027 ,164 
4.? ,358 ,172 
7.9 ,794 ,275 

10.0 1.101 ,350 

L8.4 2.513 ,982 
?0.5 2.887 1.230 

12.0 1.420 .454 

?2.5 3.281 1.516 

-2.0 .On7 ,164 
0 ,234 ,161 

2.9 ,558 ,220 
2.1 ,4119 ,201 

5.01 .:;I . z P  
7.0 1.101 ,339 
8.0 ,785 

10.0 1.512 .<& 
12.1 1.885 ,629 

?0.5 3.528 1.640 
L8.5 3.112 1.338 

z . 6  3.951 1.993 

-2.1 - .TO1  .334 
0 -.479 ,272 
2.0 -.256 ,242 
2.9 -.1% ,230 
4.9 ,150 ,217 
6.9 .pi ,244 
7.9 ,659 .278 

.2.0 ,256 ,242 
0 ,479 ,272 
2.1 ,701 ,334 
3.0 ,732 ,365 
5.0 1.023 ,433 
7.0 1 . 2 9  ,517 
0.0 1.485 ,578 
.0.1 1.789 .701 
-2.1 2.112 .a53 
8 . 5  3.280 1.579 
!0.6 3.69Ol.91X 
!2.6 4.066 2.307 

2.1 -.950 
-.l -.n1 
2.0 -.514 
2 .9  -.393 
4.9 -.085 
6.9 ,282 
7.9 .463 
0.0 ,778 

"3.4 2.511 
2.5 2.868 

2.0 1.097 
8.4 2.166 

,586 
,488 
,427 
,397 
,349 .w 
.357 
,419 
,511 

,273 
,029 

.538 

2.0 ,514 .427 
.1 ,751 .4ea 

2.1 .950 .* 
3.0 1.121 ,633 
5.0 1.335 ,706 
7.0 1.536 ,762 
8.0 1.601 .798 

M = 4  

cm - 
0.U41 
-.02t - .02: - ,064 - 27;  -.be 
- .&E - ,804 

-1.611 
-1 .e& 
-2.ix 

,291 
.1@ - ,073 

- .13€ - .$€ 
-.pt - ,692 

-1.33E 
-1.576 
-1.836 

- ,073 
-.18: 
- ,291 

- ,459 - 4 5  - ,628 -.a1 
-1.042 
-1.844 
-2.124 
- 2 . 4 3  

,473 
.354 
,236 
,181 
.005 
-.a3 
-.2R - ,432 
-.595 

-1.222 
-1.435 
-1.670 

- ,236 
-.354 - .473 
-.m - ,621 

- .341 

I:% 
-1.055 
-1 .e41 
-1.994 
-2.283 
-2. $0 

,647 
.545 
,414 
,336 
J59 - ,060 

-A43 - . 3 4  
-.m 
1.179 

-1.369 
-1.600 

-.414 - ,545 - ,647 
-.754 - ,874 
-.978 
- ,974 

-1 125 
-1.343 
-2.033 
-2.308 
-2.575 - 

3 

'h 

0.0011 
,0021 
,004) 
,0061 

- 

,0171 
. o m  
.023 
.035 
.038 
.&A 

- . W I  
- ,0171 -.ow 

,001: 
,0041 
,0091 
.016: 
.017t 
.0a1 

.0131 
,0171 
,0231 
,0361 

.0301 

.03z 
,034: 
.055( 
,057 
,057: 

-.043t 
- .03% -.om 

- _ _  

,044: 
.044f 

- - .  
- - .  
- - .  

-.014: - ,0121 
-.0111 
-.0074 - ,0045 - ,0041 

,0321 
.03% 
.Ob36 _ _ .  
- - _  
- - _  
.OLE 
.044c 
,042: 
.03T 
.03€ 
.on& 

- ,0689 
- ,0669 
- ,0605 _ - _  
- _ _  - _ -  - ,0458 

- ,0474 
- .0440 - ,0455 
- ,0480 

-.0467 

,0609 
,0667 
.06@ 
,1040 
,1100 
,1110 
,0686 

. O F 1  
,0159 
,0087 
.oo23 

nc.71 .-, ,- 

- 

CNi - 
.o ,016 
- .003 

.002 
,008 

.14k 

.169 

.I% 

.2& 
,326 . 3 7k 

- - -  

- ,161 
- ,111 
-.064 - _ -  

,038 
,058 
.OP 
,125 
,157 
,192 

,064 
,111 
.160 
,160 
,195 
,223 
.292 
.3= 
,352 
.459 
.511 
,577 

-.33P 
- 2 7 3  - .2l7 - - -  - - -  
- _ -  
-.on - ,062 
-.046 
-.007 

,005 
,019 

. a 7  
2 7 3  
.339 - - -  - - -  

- - -  . &y 
,497 
.533 
.674 
.748 
,828 

-.584 
-.502 
- .425 _ _ _  - - -  _ _ _  
-.234 
-.a0 - .199 
- .173 - ,170 
- .165 

,425 
.m 
,584 
.5P 
,583 
,560 
,636 

.w 
,874 
,926 
.973 

7 n F i  . ,_ "  

._ 
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TABLE I. - EXPERIMENTAL PJ3SULTS FOR ASPECT-RATIO-4/9 CONTROL-BODY 
COMBINATION - Concluded. 

(b)  M = 5.05; M = 6.25 

- 
5 ,  

'i 
0 

10 

10 

-2' 

20 

-3( 

31 

- 
a, 
k s  
.2.0 
0 
2 .o 
2.Y 
4.9 
6.9 
7.9 
9.9 

11.9 
18.3 
'0.3 
'2.3 

.a .o 
0 
2 .o 
2.9 
4.9 
6.9 
7.9 
9.9 

11.9 
18.2 
20.3 
2 . 3  

-2.0 
0 
2.0 
2.9 
i . 9  
6.9  
7.9 
9.9 

11.9 
18.3 
20.3 
22.3 

- 

-2.0 
0 
2.0 
2.9 
4 . Y  
6 .9  
7.9 
9.9 
11.3 
12.2 
20.3 
22.3 

-2 .0 
0 
2.0 
2.9 
r . 9  
6.9 
7.9 

10 .o 
12.0 
18.3 
20.3 
22.3 

-2.1 
0 
2 .0  
2.9  
4.9 
6 . 9  
7.9 
9 .9  

11.9 
18.2 
20.2 
22.3 

-2.0 
0 
2 . 1  
2.9 
4.9 
7.9 
9.9 

- 
CL 

1.181 
,008 
,169 
.311 
,552 
,527 
,886 

1.148 
1.437 
2.683 
3.049 
3.469 

- . 3 n  
-.1% 

,038 
,186 
,428 
. 6 9  
.747 

1.016 
1.290 
2.365 
2.735 
3.133 

- ,038 
,156 
, 371  
,553 
,791 

1.059 
1.133 
1.42C 
1.706 
2.802 
3 .1p  
3.603 

- .66c - .41E 
- 20: 
- ,124 

.23t 

.53: 

.63; 

.90t 
1.191 
2.23E 
2.54E 
2.91; 

.20: 

.41€ 
.65c 
,792 

1 .a11 
1.2% 
1.43: 
1.Pt 
2.02: 
2.97; 
3.45.1 
3 .92  

- 31: 
- .65( 
-.&I - .301 
,011 
,311 
.461 
.73' 

1.011 
1.98: 
2.33: 
2.681 

,461 
.65( 
.el: 

1.OK 
1.26f 
1.601 
1 . 9 8  
2.1% 
3.3M 
3.631 
3.%( 

- 

- 
CD 

'.119 
.111 
,129 
.144 
,182 
,242 
,281 
,375 
.497 
,179 
,332 
.653 

.lgo 
,153 
,150 
,157 
,182 
.226 
,259 
,339 
,403 
.952 
,196 

. .h74 

,150 
.I53 
.I90 
.209 
,261 
,329 
,381 
,494 
. 6 3  

-.309 
1.618 
L ,940 

,308 
,240 
.211 
,221 
,222 
,255 
,289 
,357 
. 4 9  
.9B 

1.195 
1.4% 

,211 
,240 

- 

,338 
,348 

.495 

.5% 

.6& 
,849 

1.661 
1.958 
2 2% 

.527 

.439 
,420 
,393 
.366 
.373 
,396 
,448 
.528 

1.033 
1.257 
1.90 

,420 
,439 
,527 
,373 
,437 
. 718 
,870 

1.062 
1.903 
2.220 

.419 

M = 5.05 

0.100 -0.0044 

-.067 ,0046 
0 

-.147 - - - 
-275 - - - 
-.429 - - - 
-.424 ,0110 
-.552 ,0120 
-.703 ,0140 
.1.4P .02b3 
.1.742 .0262 
.2.034 ,0308 

-.206 - - - 
-.3k7 
-.332 -.0010 
-.465 .a010 
-.606 ,01520 

-1.226 ,0131 
-1.451 . o n 9  
-1.718 ,0207 

- - - 

~- 
-.618 ,0504 
-.776 ,0268 
-.W5 ,0321 

-1.600 ,0463 
-1.858 ,0457 
-2.162 .O% 

,105 - - - 
-.052 - - - 
-.224 - - - 
-.260 -.0190 
-.401 -.0163 
-.557 -.0147 
-1.19 -.a073 
-1.337 -.0cw 
-1.585 -.a102 

-.e07 ,0276 
-.!07 .020E 
-.+33 ,3322 
-.@ .03% 
- . 6 9  .0368 
-.765 ,0346 
-.e58 .03% 
-1.012 .03l8 
-1.202 .02n 
-1.792 .0243 
-2.144 ,0229 
-2.499 .0229 

.%8 -.OD6 
,491 -.0692 
,397 -.0648 
.274 - - - 
.091 - - - 
-.091 - - - 
-.155 -.0590 
-.299 -.0590 
-.4y -.0600 
-1.020 -.Os4 
-1.239 -.0622 
-1.472 - . o s 2  

-.397 ,0648 
-.491 ,0692 
-.548 ,0716 
-.Dl - - - 
-.ea7 - - - 
-.992 ,0507 
-1,175 .Oh= 
-1.364 ,0363 
-2.121 - - - 
-2.295 - - - 
-2.529 - - - 

>.032 
. . w 3  
,025 . - -  . - -  . _ -  
,118 
,146 
.178 
,259 
,308 
,362 

- ,146 
- . o p  
-.055 _ - -  
_ - -  
_ _ -  

.a17 

.o29 
,0111 
.lo6 
.14" 
.166 

,056 
,092 
246 
.i31 
,167 
,187 
,232 
,257 
,285 
,436 
.533 
.si.] 

- . 3 7  
-.243 
-.I95 - - -  _ _ -  - - -  
-.076 
- ,057 - ,0116 - ,019 

,002 
.015 

.1?5 
,243 
,317 
,357 
,407 
.4 31 
.4 36 
.a1 
.526 
,675 
.749 
,832 

-.436 
- ,518 

- .406 - - -  
_ - -  
_ _ -  - ,218 
- .207 
-.zoo 
- ,189 
-.I88 
- 2 0 4  

406 
,436 
,518 _ _ -  _ - -  
,617 
,654 
5% _ _ _  

- - -  
_ _ -  - 

- 

- 
,393 
,845 
.274 _ -  _ _  - -  
,407 
,418 
,421 
.406 
,415 
,415 

,404 
,391 
,373 - -  _ -  - -  
,441 
, 4 4 7  
,455 
,376 

,374 

,375 
,391 
,404 
.I93 

,226 
,412 
,396 
.387 

. 409 

,417 

,230 

,394 

,411 

.3'% 
,377 
.35" _ _  _ -  _ _  
.25c 
,214 
.la1 
-111 
i.113 
.l& 

,355 
,371 
.39e 
,400 
.41c 
.42c 
.41E 
.L34 
.44i 
,464 
.4?c 
,473 

,362 

.34c 
,341 

.ea! 

.21: 

.20c 
,202 
,165 
.22: 

.34c 

.36: 

.41€ 

.43t 

.44t 

.341 

- 

- 
a 
- 
-2 .0 
0 
2.0 
4.9 
7.9 
9.9 

t i  .9 
18.1 
20.1 
22.2 

-2.0 
0 
2 .o 
8.0 

10 .0 
12 .0 
18.1 
20.1 
22.2 

-2 .o 
0 
2 .0 
1.9 
j .9 

I d  .o 
18.1 
20.2 
22.2 

-2.0 
0 
2.0 
4.9 
7.9 
9.9 

11.9 
18.1 
20.1 
22.2 

-2 .0 
0 
2.0 
4.9 
7.9 
3.9 

11.9 
18.2 
20.2 
22.2 

-2 .o 
0 .0 
2 .o 
4.9 
7.9 
9.9 

11.9 
18.1 
20.1 
22.1 

-2.0 
0 

2 . C  
4.5 
7.5 
9.5 
I1 .? 
18.2 
20.2 
2 2 . 2  

- 

3.149 
.001 
,153 
,491 
,792 

1.012 
1 .ago 
2.293 
2.612 
3.012 

-.346 - ,164 
,008 
.6& 
.915 

1.141 
2.100 
2.149 
2.806 

-.ma 
,164 
,346 
.9% 

I.226 
1.62 
2.1511 
2.019 
3.242 

- . s 5  
- 2 7 3  
-.O% 

,204 
,536 
,716 
.943 

1.882 
2.205 
2.563 

.O% 

.273 
,515 
,844 

1.202 
1.473 
1-752 
2.790 
3.168 
3.601 

- ,728 
-.478 
-.3% 

,025 
,403 
A04 
,804 

1.692 
1.978 
2.37: 

. 3 s  

.4?e . Be 
1 .I02 
1.501 
1.75; 
2.034 
3.081 
3.24c 
3.631 
__ 

- 
CD 

1.147 
,140 
,150 
,197 
.291 
,367 
,464 
. ,010 
. ,238 
- . 5 9  

- 

,182 

3: 
,264 
,318 
.410 
.a78 

1.099 
1.377 

.t*7 

.-53 

.182 

.373 

. i 7 9  

.6@6 
L.220 
L ,523 
1.8% 

,256 
,208 
201 
,192 
,261 
.34: 
,446 
,942 

1.153 
1.421 

,201 
2 0 8  
,256 
,362 
.S: 
.6X: 
,774 

1.481 
1.781 
2.182 

,411 
.375 
.34: 
,365 

,471 
.544 
,945 

1.164 
1.424 

,411 

.34: 
,325 
,411 
.47: 
,611 
.7% 
.3% 

1 . m  
2.08' 
2.541 
- 

0.054 
,008 

- . o p  
-.2P 
-.3% 
-.5u - ,667 
1.342 
1.532 
1.758 

,192 
,101 
,016 - .25z 

- .436 
- . 5 s  
1.184 
1.432 
1.659 

- ,016 - .lo1 
-.1W 
-.536 - ,657 - ,800 
.1.483 
1.740 
.2.042 

,349 
,193 
,117 - ,055 - ,218 - ,315 

-.505 
.1.043 
.1.273 
.I.W 

-.117 
-.I93 - ,349 
- .531 
-.n9 -.a9 
.1.082 
.1.762 
.2.033 
2.350 

.485 

.361 
,308 
,034 - ,148 

- ,267 
-.3% - ,910 

-1.371 
-1 .lo4 

- .30E 
-.361 
-.48: 
- .E  - .9& 

-1.137 
-1.33: 
-2.03: 
-2.O3E 
-2.35E 
- 

3.0027 
0 

,0050 

.0160 

.0180 

.0210 
,0241 
.0282 
.0313 

_ _ _  

-.0130 
- ,0110 - .OlOO - ,0010 
,0020 
,0030 
,0056 
,0128 
.0143 

,0100 
,0110 
,0130 
,0130 
.0220 
,0235 

- ,0015 - ,0142 
- ,0112 

- ,0327 
-.0362 
-.0301 
-.lo39 - ,0225 
- .0220 
- ,0210 - ,019: 
- ,0180 
-.014$ 

,0301 
.1)362 
,0327 

.021c 

.021c 

.014C 

_ _ _  

- - -  _ - -  _ - _  

- _ -  _ - -  _ _ _  _ _ _  _ _ _  _ - -  - _ _  _ _ -  _ _ _  - - -  

_ _ _  _ _ _  
_ _ -  _ _ _  _ _ _  _ _ _  _ _ _  _ _ _  
- - -  - - _  
- 

- 
x 
- 
> ,164 
. ,162 
.gw 

,302 
,322 
.310 
,394 
,399 
,404 

. .425 
,393 
,353 
.643 
.393 
.UG 
,442 
,393 
,408 

.353 
,393 
.425 
,1441 
,410 
.118 
.YJ3 
,527 
,519 

.336 
,210 
,270 

,164 
.073 - ,024 

-.0@ 
9.5 
1.799 

4.1 

.2T 

,336 

.444 

."* 

.4 7c 

,210 

- - -  

_ _ _  _ _ _  _ _ _  

_ _ _  
_ - .  
_ - .  
- - .  - _ .  
_ - .  _ _ .  
- - .  _ _ .  
_ _ .  

_ _ .  
_ - .  
_ - .  _ _ .  
_ _ .  
- - .  

- 
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TABW 11.- EXPERIMENTAL RESULTS FOR ASPECT-RATIO-1 CONTROL-BODY 
COMBINATION 

(a) M = 3.00; M = 4.23 

-.353 
-.277 
-.a1 
- J35  
-.049 

,1118 
.412 
,413 
,399 
,402 

,010 
,080 
,140 
,219 
,282 
,355 

,200 
,363 
,400 
,416 
,426 
,427 

.I35 
,211 
,277 
.353 
.467 
,543 
.62l 
,745 

-.633 
-.561 
-.488 
-.404 
-271 

,399 
,413 
,412 
,418 
,396 
,397 
,403 
,422 

,399 
.406 
,411 
.411  
,382 

-.a87 
-.029 

,047 
,055 
.a99 

,404 
,488 
,561 
,633 
. T U  
,774 
.843 

-.m 
-.&4 
-.761 
-A73 - - -  
-.454 

- 2 4 2  
-.196 

-.145 

- - -  

-.in 

,343 
.oi4 
,728 
,638 
,538 

,411 
.4Ll  
.G 
,399 
,391 
.418 
,435 

,418 
,412 
,412 
,410 _ _ _  
.391 - _ -  
. 3 4  

,222 
,262 

,161 

1.261 
1.654 
2.007 
2.3% 
2.998 
3.507 
4.160 

.%8 
,680 
,842 

1.023 
1.409 
1.689 
2.106 

1.948 
2.318 
2.6ll 
2.836 
3.295 
3.769 

1.182 
1.363 
1.561 
1.pi 
2.13e 
2.467 

A73 
,761 
,824 
.8gO 

1.001 
1.050 

,1110 
,412 
,412 
.418 
.Q2 
.&2 

m ~ 3.00 M ~ 4.23 - 
a, 
de6 - 
-2.1 
0 
1.0 

4.2 
7.2 

10.3 
13.5 
18.0 
a .2 

- -  
5 .A 

-4.4 
-2.3 - .2 
2.0 
4.9 
7.0 

10.2 
13.4 
17.8 
21 .O 
24.2 

-2.0 
.2 

2.3 
4.4 
7.3 

10.5 
13.7 
18.1 

-4.5 
-2.4 
-.3 
1.8 
4.8 
6.9 

10.1 
13.3 
17.7 
20.8 
24.0 

-1.8 
.3 

2 . 4  
4 .5  
7.5 

10.6 
13.7 

-4.6 
-2.7 -.: 
1.6 
4.7 
6.8 
9.9 

13.1 
17.6 
20.1 
23.5 

-1 . t  

2.: 
4.6 
7.: 

10.7 
13.9 

- 

- a x -  - 
a - 

-2.0 
0 
2.0 
d.Y 
5.0 
7.0 
8.0 
10.1 
12.1 
i2.j 
20.6 
22.7 

-2 .I - .1 
2.0 
2.9 
4.9 
6 .9  
8.0 

10 .o 
12 .o 
18.4 
a . 5  
22.6 

-2.0 
.I 

2.1 
3 .O 
5.0 
7.0 
8.1 

10.1 
12.2 
18.6 
20.7 
22.: 

-2.2 - .1 
1 . 9  
2.e 
4.9 
6.9 
7.5 

10 .c 
12 .c 
18.4 
20.4 
22.: 

-1.9 
1 

2.2 
3 .O 
5.1 
7.1 
8 .I 
10.8 
12 .8 

-2.3 - .i 
1 . 5  
2 .E 
4.E 
6.5 
7.5 
9.5 

12 .c 
18.: 
20.4 
2 2 . 4  

- 1 . 5  

2.: 
3.1 
5.1 
7.2 
8.8 

10.: 
12.: - 

- 
CD 

) ,165 
.148 
,161 
,173 
.a0 
,268 
.3% 
,477 
.62e 

1.751 
2.168 

,293 
,228 
,201 
,183 
,180 
,215 
,233 
. 9 8  
.433 

1 ,069 

,659 

,201 
.22€ 
,293 
.283 
,413 
,537 
.62z 
.781 
,994 

1.815 
2.195 
?.77c 

,636 
,505 
,415 
.3@ 
,321 
,315 
.341 
,395 
,491 

1 .OK 
1.241 
1.525 

.41: 

.50: 
,636 
,744 .e& 
1.042 
1.111 
1.335 
1.61: 

1.281 
1.081 
,921 .ea! 
.73E 
. 6 y  
A34 
,664 
.?33 

1.17C 
1.3& 
1.62: 

.921 
1.081 
1.281 
1.43t 
1.574 
1.734 
1.87- 
2.12E 
2 . 4 3  

- 

1.444 

1.346 

- 

c, 
0.220 

,021 

- 

- ,076 
-.is 
-.409 - .&6 

-1.297 
-1 .e& 
-2.530 
- 2 . G j  

ch - 
-0.0064 
- ,0008 

,0034 
.Mj6 
,0062 
.0220 
,0260 
,090 
.a379 
. t4jg 

CL 

.a. 308 
- .030 

,248 
,406 
,716 

1 .O& 
1.325 
1.717 
2.130 
3 . z I 3  
4.045 
4.586 
-.e37 
-.527 

- 

-.230 
-.087 

.25l 
,604 
. a 4  

1.172 
1.542 
2.776 
3.260 
3.694 

.230 
,527 
,837 

1.030 
1.347 
1.705 
2.010 
2.427 
2.877 
4.342 
4.837 
5.444 

.1.489 
-1.161 - .&6 
-A30 
-.229 

,197 
,388 
.739 

1.090 
2.246 
2.639 
3.034 

,826 
1.161 
1.489 
1.627 
1.933 
2.249 
2.548 
2.937 
3.338 

-2.125 
-1 .809 
-1.449 
-1.249 
-.e41 
-.397 
-.la 

,193 
,541 

1 . 9 9  
1.925 
2.275 

1.449 
1.809 
2.125 
2.279 
2.544 
2.802 
3.016 
3.348 
3 . P  - 

__ 
.o ,352 - .016 
,146 . j2i 
.w 

1.408 
2.1p 
3.000 

...%I 
4.160 

,252 
.3B6 
A03 
,923 

1.589 . , ~ -  
'.I", 

.so 

.3% 
,303 
,260 
.a8 
,265 
,387 
,610 

1.153 
1.637 
2.197 

1.065 
.&6 
,594 
.369 
.012 - .23 - ,655 

-1.108 
-1 .e l2 

- ,0289 - .a243 
- ,0184 
-.0136 
-.0048 

.0030 
,011 0 
,0140 
,0184 

-3871 ,570 

,214 

-.7781 .0012 I ,012 I . 4w  

-2.335 ,0213 
-2.718 ,0258 

,406 

.42C 

.a2 
1.181 

.260 -.365 - ,594 - .E16 
,0136 
.01& 

-.214 ,0080 ,101 
-.3871 ,0120 1 .I@ 
-.570 .Ol% 202  

.303 

.3% 

.so 
,764 

1.064 
1.474 
2 .OM 

,0243 
,0289 
,0486 
.0559 
,0604 
,0579 

.2.356 

.2.007 

.1.654 
,1261  - .64E - ,091 

.74i 
1.SE 

3.9% 

2.49; 
3.204 

1.023 
,842 
,680 
.%E 
,445 
.380 
,417 
,577 .w 

1.3% 
1.912 

1.63: 
1.417 
1.201 

,944 
.57: 
.2% - .266 
-.nt 

-1.274 
-1.757 
-2.29 

- ,0643 - ,0526 - ,0433 - ,0361 - , 0 3 9  - - -  

1.038 
,837 
.6P 
,525 
.269 

0 - ,067 
- ,264 
-.457 

-1.171 
-1.424 
-1.686 

-.0334 - ,0294 
-.0212 - - -  - - -  - - -  
- . O l e 2  
- ,0168 
- ,0168 - ,0153 - ,0144 - .On4  

-.435 ,423 
-.363 ,419 

- - - I - - _  
-.0137 - ,0141 
-.0101 
-.0076 - ,0038 

- .9411 
-1.201 
-1.411 
-1.63: 
-2.052 
-2.362 
-2.796 

.0361 
,0433 
. 0 2 6  
,0643 
,0776 
,0639 
.0553 

,303 
,363 
.435 
,452 
,508 
. 5 F  
.555 
,629 
.683 

.430 
,419 
,423 
,333 
. 3 9  
,392 
,428 
.427 
,434 

- ,632 
- 3 3 7  

-1.038 
.i ,105 
.1.297 
.1.4& 
-1.708 
-1.969 
-2.240 

,0212 
,0294 
.0334 
,0528 
,0559 
,0595 
,0424 
,0457 
,0452 

1 . 4 9  i.289I -.062l - . 0 ~ 7 1  -.634 -.703 I .412 ,417 

1.052 -.0444 -.%E ,419 

,926 
.785 

,977 
,664 
.15Z 

- . 3 k  
- . 9 4  

-1 .US 
-1.773 

- - -  
- .Ob97 

- ,045C 
- ,0467 - ,0476 
- ,049; 

_ - -  

.06M 

.06n 

. O R 7  
,073: 
,0687 
.o3% 
,019: 

,548 
,634 
,703 
,754 
,786 
.a11 
.808 

.419 

.417 
,412 
.3& 
.391 
.404 
,443 

,0444 

,0889 

. o m  

.ou2 I 

-1.052 
-1.289 
-1.490 
-1.593 
-1.773 
-1 .Q52 
-2.063 I -3.lOC 
-2 3 5  03% 853 455 
-2:585l :0329l :w1 I :461 1 I 
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TABLE 11.- EXPERIMENTAL RESULTS FOR ASPECT-RATIO-1 CONT3OL-BODY 
COMBINATION - Concluded. 

- 
* 
- 
,270 

.445 

.364 

. 3 n  

.375 
,421 
.'+30 
,437 

,400 

- -  

,402 
,395 
.394 

,300 
,667 
,468 
.45 
,437 

_ -  - -  

,394 
. 3 5  
,402 
,433 
. 2 
.La - -  _ _  _ _  

,398 
,375 
.35a 
,333 
,322 
,277 
.275 
,275 
.272 

.35r 
,375 
.398 
,415 
.429 
,446 

_ -  
_ -  

_ -  

- 

(b) M = 5-05; 

,743 
1.220 
1.236 
1.593 
1.751 
2.130 
2.527 
4.100 
4.688 
5.300 

.1.376 
,1.009 
-.678 
-.466 

,376 

.998 

- . lo5 
,224 

.6% 

2.054 
2.435 
2.829 

- 
a, 
de8 

-2.0 
0 
2 .o 
2 .9  
4.9 
6 .9  
7.9 
LO .o 
12 .o 
18.3 
23.3 
e . 4  

-2.1 
0 
2 .o 
2.9 
4 .9  
6.9 
7.9 
9.9 

L2.0 
18.2 
20.3 
22.3 

- 

-2.0 
0 
2.1 
2.9 
4.9 
7.0 
8 .O 

10 .o 
12.0 
18.3 
20.4 
22.4 

-2.1 - .1 
2.0 
2.9 
4.9 
6.9 
7.7 
9 .9  

11.9 
18.2 
20.2 
22.3 

-2 .o 
1 

2.1 
2.9 
5.0 
7.0 
8.0 

10 .a 
12.1 

-2.1 - .1 
1 . 9  
2.8 
4.9 
6.9 
7.9 
9.9 

11.9 
18.2 
20.2 
22.2 

-1.9 
1 

2.1 
3 .O 
5.0 
7.0 
8 .O 

10 .c 
'.2.1 - 

,181 

,280 
,270 
,378 
,477 
. 5 d  
,723 
,932 

1.950 
2.409 
2.936 

,583 
.GO 
,389 
,356 
.333 
,390 
.374 
,429 
,513 

1.026 
1.257 
1.524 

- 
CL - 

.O ,254 
-.002 

,259 

,689 
1.001 

.3% 

,678 
1.009 
1.376 
1.552 
1.887 
2.235 
2.436 

3.249 
2.813 

-.743 - ,437 - ,164 
0 

.3m 
,617 
,745 

1.059 
1.379 
2.565 
3.000 
3.456 

,164 

,389 
.460 
,583 
.664 
,788 
,960 

1.095 

1.588 
1 . 3 4  

CD 

0.170 
,151 
.lD 
,176 
,218 

,362 
,469 
,614 

1.354 
1.699 
2.101 

- 

,283 

.l.932 

.1.594 
4.306 
-.997 
-.636 
-.355 
-.174 

.413 

.118 

,280 
. a 6  
,181 
.I93 
.192 
.240 
,278 
,355 
,455 
,052 
,307 
,611 

1.131 
,963 
,875 
,805 
.733 
.657 
,664 

,762 
,693 

M = 5.0 

Cm - 
-0.121 - .010 
- ,149 - ,214 
-.378 
-.552 
-.m4 - ,901 

-1.9% 
- 2 . 3 9  
-2.786 

,469 
, 2 9 3  
,139 
.056 - 111 

- .29l - ,348 
- ,514 
- ,686 

-1.405 
-1.697 
-2.009 

-.139 
- ,293 - ,469 
-.E94 - ,775 
- . 9 F  

-1.067 
-1.327 
-1.584 
-2.623 
-3.053 
-3.52'1 

,923 
,709 
,513 
.377 
,166 - ,024 - ,117 

- ,281 
- ,462 

-1.03E 
-1.277 
-1.542 

-1.143 

-.513 
-.PS 

-1.04c 
-1.252 
-1.46: 
-1.571 
-I ,805 
-2.124 

1.331 
1.12; 

,945 
.?oh 
.49E 
,361 
.24: 
,107 - ,104 

-.6T - . e 6 4  
-1.OX 

-.945 
-1.12: 
-1.331 
-1.4% 
-1.66E 
-1 .EEL 
-2.005 

-2. 561 

-.923 

-2.241 
- 

ch 

3 ,0027 

3.0052 
2.0024 

- - -  - - -  - - -  
.0167 
,0189 
.0227 

,0325 
-0377 

- ,0129 

- .OOD 

,0298 

- ,0084 

- - _  - - _  
- - -  
.0042 
,0052 
.00% 
.009u 
.om1 
,0133 

.0op 

,0129 
.0084 

- - _  - - -  - - _  
,0275 
.0304 
.Q333 
,0385 
. 0 3 P  
.0,127 

- .03r?e - ,0357 
- . O W  - .OS7 
- ,0253 - .0226 
- .om6 - ,0201 

,0185 - ,0184 - ,0148 - ,0143 

. o j u  

.0357 
,0388 
.0525 
,0557 
,1092 
,0476 
.0485 
, 0 9 4  

- .0522 - ,0557 
-.0536 - _ _  
- - -  - _ _  

-.0470 - ,0500 - ,0540 
-.a580 
- ,0609 - .&35 

,0536 
,0557 
,0522 
.0749 
,0773 
.0738 
,0500 
,0449 
,0384 
_I 

cNc - 
o ,038 
0.001 
0.029 _ - -  - - -  - - -  

,132 
,165 
,200 
.3ll 
,377 
.449 

-.I73 - ,126 
- ,083 - - -  - - -  
_ - _  

,003 
,022 
,046 
,114 
,151 
,193 

.083 
,126 
,173 - - _  

_ - _  - - -  
,305 
,354 
,408 
,582 
,681 
.B2 

- ,392 
- . a 8  - .260 - . 2 3  
-.173 - ,142 - ,121 
- ,103 - ,090 - ,051 
- .045 
-.030 

,260 
,318 
.392 
,397 
.457 
,511 
,552 
.608 
,672 

- .68l 
- ,599 
-.554 - _ -  - - -  - _ -  
-.321 
-.303 - ,285 
-.285 
- 2 9 4  
-.306 

,574 
.599 
,681 
.-I% 
,772 
3 1 9  
,759 
,808 
.a75 __ 

- 
x 
- 
,429 

,317 
_ -  
- -  _ -  
- -  

.374 

.3% 
,387 
.404 
,414 
,416 

,426 
,433 
.415 _ -  _ -  _ _  
.900 

.3m 

,433 

,236 

.414 

,431 

,415 
,433 
.426 - _  _ -  
- -  

,410 
.414 
,418 
,434 
.446 
.id15 

,401 
,388 
,377 
.385 
,354 
,341 
.330 
.305 
,295 
,135 
.17l 
,023 

.377 

.38e 
,401 
.36e 
.37€ 
.281 
,414 
. 4 z  
,422 

,423 
, 4 0 7  
.403 - _  - _  - _  
,354 
.33: 
,311 
,297 
,293 

-40: 
.40; 
.42: 
-39i 
.4oc 
.41i 
.43L 
.4w 
.4% 

,293 

- 

M = 6.25 

- 
a 

.2.0 
0 
2 .o 
4.9 
7.9 
9.9 
-1.9 
3 . 2  
'0.2 
!2.2 

- 

.2.0 
.o 

2 .o 
4.9 
7.9 
9.9 
.1.9 
-8.1 
a.2 
Y.2 

.2.0 
.o 

2 .0  
7 . 9  
9.9 
-1.9 
-8.2 
'0.2 
'2.2 

-2.0 
.0 

2 .o 
7.9 
9.9 

.1.9 
-8.1 
'0 .I 
?2.2 

-2.0 
.o 

2 .o 
7.9 
9.9 

L2 .o 

-2.0 
0 
2.0 
4.9 
7.8 
9.9 

u . 9  
L8.1 
?o .1 
?2.1 

-2.0 
0 
2.0 
4.9 
7.9 
9.9 

11.9 

CL 

3 2 3 6  

,567 
.9@ 

1.240 
1.562 
2.784 
3.261 
3.775 

- ,004 
,198 

- ,618 
-.351 - ,106 
.2,1 
.5% 
.ass 

1.093 
2.122 
2.569 
3.081 

,106 
.35: 
,610 

1.y3 
1.95; 
2.3m 
3.613 
1.183 
4.762 

1.132 

-.554 
,269 
.536 
.813 

1.605 

2.426 

- .525 

2.019 

.554 
,825 

1.132 
2.144 
2.500 
2.920 

1.729 
1.395 
1.195 
- . P 7  - ,266 - ,061 

.143 
,971 

1.158 
1.480 

1.195 
1.395 
1.729 
2.192 
2.611 
2.948 
3.342 

_. 

CD 

3.202 
,194 
.214 
,236 
,343 
,438 
,562 

1.291 
1.606 
1.980 

,294 
,245 
. a 2  
,186 
,249 
,307 
.3Y3 

1.049 
l.hl8 
1.476 

,212 
,245 
.Z)4 
.547 
.6Y5 
,815 

1.819 
2.276 
2.761 

.528 
,425 
,374 
,350 
,387 
.450 

1 ,5211 

1.002 
1 .241  

.37]1 

.425 
,528 
.941 
1.151 
1.421 

.037 
,872 
,810 

,658 
.689 
,753 
.198 
,406 
,661 

. p a  

,810 
,872 

1.037 
1.293 
1.636 
1.920 
2.258 

M = I  - 
c, 

0.113 
- 

,007 - ,099 _ - -  
-.521 
-.723 
- .937 
1 . ~ 6  
2.064 
2.423 

.432 
,270 
,120 

-.139 
-.145 
- .290 - ,428 
1.215 
1.526 
1.875 

-.la 
-.270 
-."32 
- .99Y 
1.2n 
1.522 
2.285 
2.705 
3.149 

.E16 
,619 
,433 - .038 
-.2l8 - ,1121 
- .8% 
1.102 
1.427 

-.433 - ,619 - ,816 
1.466 
1.726 
2.065 

1.270 
1.036 

,899 

,284 
.14? 
,017 - ,479 

- ,825 

- - -  

-.618 

- ,899 
.i .036 
.I ,270 

.2.125 

- - -  
.1.863 

,2.477 
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Figure 4.- Voriat&n of control effectiveness with 
Mach number for both controls te&d 
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.- 
(a) M: 

fiiure 6- Variation of control-normal- force coefficient with angle 
of attack and control deflection for the A = 4/9 control 
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3.00 

.- 
(c) M=505 

0: degrees t$ degrees 
(d) M= 625 

Figure Z- Voriofion of confro/-norma/-force coefficient wifh angle 
of attack and confro/ def/ection for the A = / confro/. 
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Figure 8.- Variation of hinge-moment coefficieni with ang/e of 
attack and control deflection for the A = 4/9 control: 
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figure 9- Vuriution of hhge-moment coeffiiient with ung/e of 
attack and contra/ deflection for the A = / confro/. 
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fi@we io- &OmpPafisOn of theory and experiment for ihe aerodynamic 
charocteristics of the A = 4/9 con trol-body combihution. 
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Figure 10- Conc/uded 
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figure 11- Comparison of theory and experiment for the aerodynamic 
characAwistiks of the A = I control-body combhafion 
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figure lk Concluded 
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figure 12. - Variation of control- normal- force coefficient with angle of 
aftock for s =Of 
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F&ure 13. - Variation of control-norma/-force coefficient with angle of 
attack tbr the A = 4/9 control. 
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Figure 13.- Concluded 
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figure 14- Variation of control-normal- force coefficienf with angle of 
attack for the A = / control 
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Figure 14.- Concluded 
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figure 15- Vurkfion of control surface parumeters with Mach 
number for both controls fat u = 6 =OY 
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Figure 15- Conc/uded 

NACA - Langley Field, VA. 


